If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x-34=0
a = 2; b = -14; c = -34;
Δ = b2-4ac
Δ = -142-4·2·(-34)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{13}}{2*2}=\frac{14-6\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{13}}{2*2}=\frac{14+6\sqrt{13}}{4} $
| 3(a-6)=6a-(3a-18) | | 54=p+(p×2)+(p+4) | | 12x-18=x-60 | | x+5=4x+ | | 56=p+(p×2)+(p+4) | | 12x-18=x-0 | | -6=2y+2 | | 5=16x^2+8x+12 | | 8+5+2x=x | | P+(p×2)+(p+4)=56 | | X+(x/2)+2x=112 | | 7-3y=10-8y+5y | | (2y-3y-4)+5y-6)+10y=(12y+12)+36 | | L+4x=-5+7x | | 21y-7=5+18y | | 0.5x+0.6=0.8x-1.2 | | 6+3+2x=x | | 7=w/5=13 | | 2s+1=5s−2 | | 3=2x+5x+3 | | -5x+2=4x-78 | | 5.5-x=-4.5-1 | | 3x+4/8x-1=0x=3 | | 3x+4/8x-1X=2 | | 200-u=250 | | 3x+4/8x-1=0 | | 7c=6+7c | | 209/(11x+13x)=19 | | (3)(2^x)=96 | | 63y+3=45 | | -4+w17-2/3w=16 | | -n*n=16 |